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Abstract
Agriculture in developed countries is produced under heavily subsidized insurance. The pricing of these 
insurance contracts, termed premium rates, directly influences farmers profits, their financial solvency, and 
indirectly, global food security. Changing climate and technology have likely caused significant shifting of 
mass in crop yield distributions and, if so, has rendered some of the historical yield data irrelevant for 
estimating premium rates. Insurance is primarily interested in lower tail probabilities and as such the 
detection of structural change in tail probabilities or higher moments is of great concern for the efficacy of 
crop insurance programs. We propose a test for structural change with an unknown break(s) which has 
power against structural change in any moment and can be tailored to a specific range of the underlying 
distribution. Simulations demonstrate better finite sample performance relative to existing methods and 
reasonable performance at identifying the break. The asymptotic distribution is shown to follow the 
Kolmogorov distribution. Our proposed test finds structural change in most major U.S. field crop yields 
leading to significant premium rate differences. Results of an out-of-sample premium rating game indicate 
that incorporating structural change in crop yields leads to more accurate premium rates.
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1 Introduction
1.1 Background
The Agricultural Act of 2014 solidi!ed crop insurance as the cornerstone of domestic U.S. farm 
policy. In 2022, total U.S. government liabilities associated with the crop insurance program 
were $194.6 billion and the Congressional Budget Of!ce estimates crop insurance will cost the 
public roughly $100 billion over the next decade. Moreover, publicly subsidized crop insurance 
is the dominant farm policy in most of the developed world. The pricing of these insurance con-
tracts, termed premium rates, directly in"uences farmers pro!ts, their !nancial solvency, and in-
directly, global food security. The actuarially fair premium rate, denoted ʌ, of an insurance 
contract is de!ned as the expected loss divided by total liability. De!ning the random variable 
crop yield as Y, the actuarially fair premium rate for insurance coverage below a yield guarantee, 
denoted yG, is:

ʌ = 1
yG

�yG

0 (yG − y) dFY , (1) 
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where the yield distribution, FY, needs to be estimated. The standard approach in the crop insur-
ance literature is to estimate a temporal process using the historical yields, if necessary adjust the 
residuals for heteroskedasticity, and !nally estimate the unknown yield distribution using the 
temporal and variance adjusted yields (Goodwin & Hungerford, 2015; Goodwin et al., 2000; 
Harri et al., 2011; Ker et al., 2016; Mieno et al., 2018; Woodard & Sherrick, 2011). 
Premium rates are derived using the estimated distribution plugged into equation (1). The above 
approach necessarily assumes the adjusted yields are strongly stationary and from the unknown 
distribution FY .

Climate and technological change bring into question the identically distributed assumption of 
the historical data. Testing and correcting for structural change in the conditional mean using, for 
example, splines or some other temporal model and correcting for change in the variance using 
appropriate heteroskedasticity adjustments are easily doable. However, testing for structural 
change in certain parts of the distribution—such as the lower tail which is particularly important 
for pricing insurance contracts—does not currently exist.1 Ignoring structural change in the tails of 
the yield distribution will lead to biased tail probabilities, and by default, biased premium rates. In 
this article, we propose a test, based on a sup-type measure of distributional equivalence,2 which 
can identify structural change in any moment, not just the conditional mean and variance. 
Furthermore, a weighting function can be imposed to only test over certain regions of the distri-
bution. While we apply this test and argue its relevance for pricing crop insurance contracts 
and by default global food security, such a test is useful for pricing any insurance contract (e.g. 
property insurance, !re insurance, "ood insurance, etc.) given that climate change appears to be 
altering loss/tail probabilities and as such calls into question the usefulness of historical data to 
estimate these probabilities.

Figure 1 provides an example of how structural change in higher moments affects the estimation 
of yield densities and premium rates, and thus illustrates the economic importance of our proposed 
test. Corn yields in La Crosse County, Wisconsin are found to contain a structural change in 1988 
both beyond the conditional mean as well as beyond the conditional variance. That is, the premi-
ums calculated are different solely because moments higher than order two are different.3,4 Three 
estimated yield densities are plotted in Figure 1; one using the entire yield series, the second using 
data prior to the structural change in 1988, and !nally one using data post the 1988 structural 
change. The premium rates are calculated with equation (1). At the 90% coverage level, the pre-
mium rate using all yield data is 7.4%. Conversely, the premium rate prior to the 1988 break is 
3.6% whereas the premium rate after the break is 13.1%, almost double that of using the entire 

Figure 1. Conditional corn yield densities, La Crosse County, Wisconsin.

1 In the insurance world that precipitated this proposed test, we are concerned with signi!cant portions of the lower 
tail and not just the extreme lower tail as in ‘extreme-value theory’. We use the terms ‘higher moments’ and ‘tail prob-
abilities’ to denote structural change beyond the mean.

2 A ‘sup-type’ measure is the supremum or maximum over a given set. In our case, this set is across the various pos-
sible breaks.

3 La Crosse County corn is chosen only as a representative example where a structural change is found.
4 The United States Department of Agriculture (USDA) Risk Management Agency (RMA) methodology is used to 

adjust for change in conditional variance, which is detailed in Section 4.
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yield series as is currently done. Given the U.S. crop insurance program is a multi-billion dollar 
program, these premium rate differences suggested by the structural change tests represent billions 
in transfers of public monies.

1.2 Structural change tests
Since the seminal work of Page (1954) and Chow (1960), testing for structural change in the con-
ditional mean function has received signi!cant attention in the literature. For example, Andrews 
(1993, 2003) considered three tests (LR test, LM test, and Wald test) for parameter instability 
with a known and unknown break. Bai & Perron (1998, 2003) considered structural change us-
ing a supremum version of the Chow-test across a set of possible breaks. Ghysels et al. (1998)
and Hall and Sen (1999a, 1999b) proposed predictive tests to identify possible structural change 
for models estimated using Generalized Method of Moments (GMM). This work was followed 
by Gagliardini et al. (2005) which considered endogenous structural change while Li et al. 
(2021) focused on smooth structural change. Many tests have considered models under more 
speci!c conditions. A non-exhaustive list includes: models with possible unit roots (Hansen, 
1992; Harvey et al., 2009; Perron & Yabu, 2009); models with common breaks (Oka & 
Perron, 2018); models with endogeneity (Kurozumi, 2017); models with cointegration 
(Kejriwal & Perron, 2010); quantile regressions models (Oka & Qu, 2011; Qu, 2008); models 
estimated via the Lasso method (Chan et al., 2014; Harchaoui & Lévy-Leduc, 2010; Qian & Su, 
2016); panel data models (Bai, 2010; Baltagi et al., 2016; Li et al., 2016), forecasting models (Xu 
& Perron, 2017); and factors models (Bai et al., 2020). While most tests for structural change 
have focused on the conditional mean, a few have considered structural change in the condition-
al variance. For example, a Wald-type test and a bounds test for a single known break in the con-
ditional variance were proposed by Greene (2012) and Kobayashi (1986), respectively.5 More 
recently, Esfandiar et al. (2010) and Mumtaz et al. (2016) proposed an ‘MZ’ test and a sup-type 
‘MZ’ test which can be used when the break in the conditional variance is known or unknown, 
respectively.

Tests for distribution equivalence also abound. The Cramér–von Mises (CvM) test (Anderson, 
1962; Cramér, 1928; Mises, 1972) examined the goodness of !t using an integrated square differ-
ence (ISD) metric between two empirical cumulative distribution functions (CDF) or an empirical 
CDF and a given CDF. The Anderson–Darling test (Anderson & Darling, 1952) is similar to the 
CvM test, except that the ISD is weighted by the pointwise variances of empirical CDFs. 
Moreover, the test can be applied to greater than two empirical CDFs. An alternative to the above 
two tests is the Kolmogorov–Smirnov (KS) test (Darling, 1957) which focuses on the supremum of 
the absolute difference between two empirical CDFs. A closely related test is Kuiper’s test (Kuiper, 
1960), where the test statistic is the sum of the absolute values of the single largest positive differ-
ence and single largest negative difference from the empirical CDFs. The Mann–Whitney U-test 
(Mann & Whitney, 1947) and the Wilcoxon signed-rank test (Wilcoxon, 1945) assume the distri-
butions only differ in location under the alternative. Conversely, the Cucconi test (Cucconi, 1968) 
and the Lepage test (Lepage, 1971) assume the distributions only differ in location and scale in the 
alternative space. More recently, Li (1996) proposed a test of distributional equivalence between 
two unknown densities using an ISD measure based on kernel estimates. The test was later ex-
panded to mixed discrete and continuous data (Li et al., 2009). Inoue (2001) tested for distribu-
tional equivalence in time series for an unknown break by using the weighted KS test and the 
weighted CvM test.

The purpose of this article is to design a test for structural change that has power against an un-
known break in any moment or speci!c part of the distribution and is relatively easy to apply. Our 
purposed test does not require the break to be known and has power against structural change in 
the conditional mean, the conditional variance, and all upper moments. The proposed test pro-
vides two contributions to the existing literature. First, it allows superimposing non-uniform 
weights easily so that it can be tailored to evaluate any subset of the distribution domain. This 
is of great relevance to crop insurances and other types of insurances where only tail probabilities 
matter. Second, the proposed test has greater power, relative to existing tests, for structural change 

5 The Wald test has the property that the probability of type I error is larger than the critical level used, which can be 
partially !xed by the bounds test.
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above the conditional mean and provides a reasonable estimate for the unknown break when there 
is one.6 We construct the proposed test by combining distributional tests of equivalence with a 
sup-type measure. We argue that this is important for the insurance industry and particularly so 
in light of the effect climate change is having on tail probability events. We focus on crop insurance 
as this is not only the impetus for deriving the test but it also represents multi-trillion dollars in 
world-wide liability and is imperative to food security.

The next section outlines the proposed test and its accompanying asymptotics. The third section 
outlines our simulation results while the fourth and !fth sections present the results of our appli-
cation to agricultural crop yields and implications for insurance. The !nal section summarizes our 
article.

2 Proposed test
Assume an independently distributed time series y1,…,yT , where observations y1,…,yt follows 
probability density function (pdf) f and the remaining yt+1,…,yT follows pdf g. Assume that 
both f and g are continuous and bounded. The null hypothesis of interest is H0 : f (y) = g(y) almost 
everywhere (a.e.). While there are many measures of distance between f (y) and g(y), we considered 
the commonly used ISD:

ISD = �∞−∞ (f (y) − g(y))2 dy (2) 

Intuitively, a sup-type measure based on a distributional equivalence measure could be used to test 
for unknown breaks, that is t unknown, in any part of the distribution or any moment. The pro-
posed test statistic, ISD⇤, can be obtained based on the supremum of ISD by replacing f (y) and g(y) 
by their kernel estimates in equation (2):

ISD⇤ = sup
t∈TT

dISDt

= sup
t∈TT

�∞−∞ ( f̂ (y) − ĝ(y))2 dy
(3) 

where TT is a subset of (1, . . . , T) which contains all possible breaks. As is common, TT is a subset 
that ensures suf!cient data exists to estimate the densities on either side of the possible breaks. 
f and g can be consistently estimated by their corresponding kernel estimates:

f̂ (y) = 1
T1h1

Xt

i=1

K
yi − y

h1

✓ ◆
and ĝ(y) = 1

T2h2

XT

i=t+1

K
yi − y

h2

✓ ◆

where K is a kernel function,7 h1 and h2 are smoothing parameters, T1 and T2 are sample sizes for 
the two subsets. Note, H0 will be rejected at a given critical level if ISD⇤ is suf!ciently large. If H0 is 
rejected, the corresponding t (denoted as t⇤) will be used to estimate the unknown break.

To demonstrate the practical applicability of ISD⇤, we present and prove the following theorem. 
It states that the asymptotic distribution of ISD⇤ under the null follows the Kolmogorov distribu-
tion. It implies that the asymptotic distribution of ISD⇤ is of the same form under the null hypoth-
esis for any continuous and bounded densities f and g.

Theorem 1 Under the null hypothesis, assuming that h1, h2 ! 0 and T1h1, T2h2 ! ∞, 
then for any positive number İ,

Pr(
ÅÅ
T

p
ISD⇤ < İ)ˇ̌ ˇ̌ ˇ̌!

T1, T2!∞ X∞

x=−∞
( − 1)xe−2x2İ2 

6 While the methodology proposed in Inoue (2001) theoretically achieves similar purpose as our proposed test, ours 
shows better performance in practice, especially in small samples.

7 Some commonly used kernel functions include: normal, uniform, triangle, quartic, and Epanechnikov. Kernel func-
tions are symmetric with mean 0 and integrate to 1 (Li & Racine, 2007).
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Proof. ISD can be expanded to:

ISD = �∞−∞ (f (y) − g(y))2 dy

= �∞−∞ (f (y) dF(y) + g(y) dG(y) − f (y) dG(y)
− g(y) dF(y)) 

A feasible test statistic can be obtained by replacing f (y) and g(y) by their ker-
nel estimates and replacing F(y) and G(y) by their empirical distribution func-
tions F̂(y) and Ĝ(y) (Li, 1996; Li et al., 2009):

ISD⇤ = sup
t∈TT

�∞−∞ ( f̂ (y) dF̂(y) + ĝ(y) dĜ(y) − f̂ (y) dĜ(y) − ĝ(y) dF̂(y)) (4) 

With � L(y) dF̂(y) = 1
T1

Pt
i=1 L(yi) and � L(y) dĜ(y) = 1

T2

PT
j=t+1 L(yj), where L() is 

any location-scale function, ISD⇤ can be formulated as:

ISD⇤ = sup
t∈TT

Xt

i=1

f̂ (yi)/T1 +
XT

j=t+1

ĝ(yj)/T2

(

−
XT

j=t+1

f̂ (yj)/T2 −
Xt

i=1

ĝ(yi)/T1

)

= sup
t∈TT

Xt

i=1

( f̂ (yi) − ĝ(yi))/T1 −
XT

j=t+1

( f̂ (yj) − ĝ(yj))/T2

( )

(5) 

Let At =Pt
i=1 ( f̂ (yi) − ĝ(yi))/T1 and Bt =PT

j=t+1 ( f̂ (yj) − ĝ(yj))/T2. Next, we 
show that the proposed test statistic does not depend on the form of At and 
Bt. Suppose there are q possible breaks, and let A(t) be 
a = A(t1) ≤ A(t2) · · · ≤ A(tq) = b. For any p that a ≤ p ≤ b, it has: 0 ≤ p−a

b−a ≤ 1. 

Let z = p−a
b−a and a(t) = A(t)−a

b−a .8 De!ne a−1(z) = inf {t : a(t) ≥ z}. The properties of 
a−1(z) are provided in online supplementary material. Let M and N be two in-
dependent empirical distribution functions of the standard uniform distribu-
tion. By online supplementary material, Proposition 1 (provided in online 
supplementary material), if the null hypothesis of no structural change is 
true, the following holds:

ISD⇤ = sup
t∈TT

{At − Bt} = sup
t∈TT

At − a
b − a

− Bt − a
b − a

✓ ◆
(b − a)

⇢ �

= sup
t∈TT

{(at − bt)(b − a)}

= sup
0≤z≤1

{(b − a)(N − M)(z)} 

Above implies that the distribution of ISD⇤ will stay the same and not 
depend on the original form of f (y) and g(y) under the null hypothesis. 
The uniform process 

ÅÅ
T

p
((b − a)(N − M)(z)) is shown to converge to a 

8 Assuming that T1/T2 is a constant when T1, T2 ! ∞, the nuisance parameters (T1, T2, and h) are neutralized 
when standardizing A(t) to a(t).
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Brownian bridge process. Komlóos et al. (1975) found a rate of conver-
gence such that:

Pr sup
0≤z≤1

(
ÅÅ
T

p
((b − a)(N − M)(z)) − Bz) > x + c log TÅÅ

T
p

 !

< Ke−Ȝx 

for all T and x, where c, K, and Ȝ�are positive constants. Bretagnolle and 
Massart (1989) made assumptions on those parameters and provided a 
proof of Komlóos et al. (1975). That is, the convergence of the uniform 
process to the Brownian bridge holds when c = 12, K = 2, Ȝ = 1

6 and 
T ≥ 2. With Komlóos et al. (1975) convergence and Bretagnolle and 
Massart (1989) constants, under the null hypothesis, 

ÅÅ
T

p
ISD⇤ converges 

in distribution to sup0≤z≤1Bz, whose distribution is known (see Darling, 
1957 and Dudley, 2002—Proposition 12.3.3):

Pr(
ÅÅ
T

p
ISD⇤ < İ)ˇ̌ ˇ̌ ˇ̌!

T1, T2!∞ X∞

x=−∞
( − 1)xe−2x2İ2 .

Therefore, the proposed test is independent of the form of f or g under the null 
and follows the Kolmogorov distribution.  □

We note that nothing in the above proofs prevent the restriction of the ISD measure to a subset 
of f and g. In this sense, the proposed test can be used to consider structural change in a speci!ed 
range. One simply takes the integral within the test statistic over the subset rather than taking the 
integral over entire support. This is bene!cial within an insurance context where the lower tail or 
just the lower tail below some insurance guarantee is of primary interest.

3 Finite sample simulations
In this section, we assess the performance of the proposed test in !nite samples via simulations. 
The proposed test is applied to data from distributions differing in the ith moment 
(i = 1, 2, 3, 4). We consider the !rst four moments and simulate from four sets of distributions 
with each set comprising !ve distinct distributions. Table 1 gives the details on alternative density 
functions g. For example, the column labelled ‘I’ shows the !rst set of !ve distributions that differ 
only in the !rst moment; the column labelled ‘IV’ has another set of !ve distributions that differ in 
the forth moment or higher. The null density f is N(1, 1) in all cases. A number of caveats regarding 
g deserve attention. First, with respect to simulations for structural change in either the !rst and 
second moment (column ‘I’ and ‘II’, respectively), densities f and g are both normal and so only 
differ across the !rst moment or second moment. Second, with respect to simulations for structural 
change in the third and fourth moments (column ‘III’ and ‘IV’, respectively), mixtures of normals 
are necessarily used for g. When considering structural change in the third moment, the !rst two 
moments are equal between f and g, but all higher moments are not. When considering structural 
change in the fourth moment, the !rst three moments are identical between f and g while the fourth 
and higher moments are not. Third, by construction, the difference between f and g increases from 
density g1 through density g5. The difference between f and g is zero when g takes density g1, which 
represents the null hypothesis.

We consider sample sizes of 70, 150, 500, and 1,000 and the signi!cance level of the test is 0.05 
in all simulations.9 We speci!cally consider a sample size of 70 as county-level crop yield data be-
gan to be collected in the 1950s, resulting in a sample size of 70 for most annual crop yield data at 
county level. A sample size of 70 for a test of equivalence of nonparametrically estimated densities 
with an unknown break is borderline nonsensical (prefer more data) but represents a worst 
case scenario for our proposed test. The results presented are derived using the leave-one-out 
cross-validation method for bandwidth selection. The kernel function used is the Gaussian 

9 Results for sizes 0.01 and 0.10 are structurally similar.
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function. For each g and sample size combination, 1,000 simulations are undertaken. For com-
parison, the Bai–Perron test (Bai & Perron, 1998), the sup-type ‘MZ’ test (Mumtaz et al., 
2016), the weighted KS test and the weighted CvM test (Inoue, 2001) are considered as well. 
Those tests are the most commonly applied test when the break is unknown. The true break, de-
noted as B, is located in the middle of the sample. We consider the set of possible breaks to be 
TT = (10, 11, 12, . . . , T − 12, T − 11, T − 10). While we have derived the asymptotic distribu-
tion of our test statistic under the null, as discussed earlier, Li (1996) has shown randomization 
methods can be used in practice to recover a distribution of the test statistic under the null hypoth-
esis, which tends to perform better in terms of reducing probability of type II error. Speci!cally, to 
recover a realization from the distribution of our test statistic under the null, we !rst randomize the 
data. Based on the randomized data, we estimate the ISDt at each possible break in TT. We then 
take the supremum of the ISD. This supremum represents one realization from the distribution of 
ISD⇤ under the null hypothesis. We repeat this 1,000 times to recover 1,000 realizations from the 
null distribution. We use the 1,000 realizations to recover the empirical distribution function of 
the null distribution. We then compare our test statistic to the empirical null distribution. As noted 
by Li (1996), it is important to use the same smoothing parameters as used in the original estimate 
of ISD⇤.

The rejection rates from the proposed test and other tests at samples of 70 and 1,000 are located 
in Table 2.10 ISD⇤ˇR is when randomization method is used to recover the distribution of our test 
statistic under the null hypothesis; ISD⇤ˇA is when the asymptotic distribution of our test statis-
tics under the null hypothesis is used. As mentioned, the difference between f and g increases from 
density g1 through density g5 within each set of simulated distributions. This is shown in the third 
column of Table 2 which states the true ISD between f and g. Not surprising, the ISD between f and g 
declines dramatically as the moment of structural change increases while all lower moments remain 
equal. This intuitively makes sense because a given percentage change in a higher moment will have a 
relatively smaller impact on the density at a given support point than a lower moment.

A number of interesting points are worth consideration from Table 2. First, we !nd results simi-
lar to Li (1996) in that the randomization method performs better than the asymptotic null distri-
bution and there is a tendency to over-reject which goes away as the sample size increases. 
Therefore, we focus on the randomization method (column ISD⇤ˇR) rather than the asymptotic 
null (column ISD⇤ˇA) in the remainder of our discussion. Similarly, for SupMZ, weighted KS, and 
weighted CvM we also use the randomization method to recover the distribution of the test stat-
istic under the null hypothesis. Second, the results for all three distributional-based tests (ISD⇤ˇR, 
weighted KS, weighted CvM) are surprisingly powerful for T = 70. Third, the results are consist-
ent across all sample sizes. Fourth, the power of all three distributional tests is consistent with the 
true ISD in that the greater the true ISD, the more power the test has independent of which moment 
the structural change actually exists.

Table 1. Simulated alternative densities g

Simulation Scenarios

I II III IV

g1 N(1, 1) N(1, 1) N(1, 1) N(1, 1)

g2 N(2, 1) N(1, 2) 0.13N(2.64, 0.6) + 0.87N(0.75, 0.79) 0.49N(1.0, 0.6) + 0.51N(1.0, 1.27)

g3 N(4, 1) N(1, 4) 0.19N(2.57, 0.6) + 0.81N(0.64, 0.67) 0.59N(1.0, 0.6) + 0.41N(1.0, 1.39)

g4 N(6, 1) N(1, 8) 0.23N(2.53, 0.6) + 0.77N(0.55, 0.55) 0.66N(1.0, 0.6) + 0.34N(1.0, 1.50)

g5 N(8, 1) N(1, 16) 0.26N(2.50, 0.6) + 0.74N(0.48, 0.41) 0.71N(1.0, 0.6) + 0.29N(1.0, 1.60)

Note. Scenario ‘I’ refers to densities that only differ in the !rst moment. Scenario ‘II’ refers to densities that only differ in 
the second moment. Scenario ‘III’ refers to densities that only differ in the third and above moments. Scenario ‘IV’ refers 
to densities that only differ in the fourth and above moments.

10 Results for other sample sizes are structurally similar and located in the online supplementary material.
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Table 2. Rejection rates from the proposed test (randomization and asymptotic), the Bai–Perron test, the sup-type 
‘MZ’ test (‘SupMZ’), the weighted KS test (‘weighted KS’) and the weighted Cramér–von Mises test (‘weighted CvM’) 
at sample sizes of 70 and 1,000

g(y) True ISD ISD⇤ˇR ISD⇤ˇA Bai–Perron SupMZ Weighted KS Weighted CvM

(a) Rejection rates (T = 70)

I g1 0.000 0.114 0.111 0.044 0.158 0.036 0.025

g2 0.125 0.898 0.259 0.896 0.266 0.938 0.975

g3 0.505 1.000 0.881 1.000 0.990 1.000 1.000

g4 0.563 1.000 0.470 1.000 1.000 1.000 1.000

g5 0.564 1.000 0.456 1.000 1.000 1.000 1.000

II g1 0.000 0.122 0.089 0.058 0.118 0.056 0.035

g2 0.066 0.894 0.125 0.054 0.844 0.242 0.500

g3 0.159 1.000 0.210 0.092 1.000 0.850 1.000

g4 0.218 1.000 0.263 0.132 1.000 1.000 1.000

g5 0.250 1.000 0.304 0.112 1.000 1.000 1.000

III g1 0.000 0.128 0.115 0.060 0.102 0.080 0.050

g2 0.008 0.164 0.132 0.058 0.118 0.050 0.075

g3 0.023 0.350 0.143 0.042 0.144 0.126 0.065

g4 0.055 0.698 0.172 0.054 0.200 0.226 0.180

g5 0.135 1.000 0.272 0.056 0.244 0.684 0.645

IV g1 0.000 0.158 0.115 0.036 0.110 0.046 0.030

g2 0.007 0.104 0.132 0.048 0.046 0.040 0.065

g3 0.013 0.194 0.139 0.026 0.088 0.076 0.070

g4 0.018 0.184 0.141 0.054 0.102 0.074 0.065

g5 0.022 0.196 0.163 0.048 0.098 0.078 0.060

(b) Rejection rates (T = 1,000)

I g1 0.000 0.046 0.021 0.052 0.140 0.060 0.035

g2 0.125 1.000 0.995 1.000 1.000 1.000 1.000

g3 0.505 1.000 1.000 1.000 1.000 1.000 1.000

g4 0.563 1.000 1.000 1.000 1.000 1.000 1.000

g5 0.564 1.000 1.000 1.000 1.000 1.000 1.000

II g1 0.000 0.058 0.016 0.052 0.124 0.064 0.045

g2 0.066 1.000 0.662 0.056 1.000 1.000 1.000

g3 0.159 1.000 1.000 0.088 1.000 1.000 1.000

g4 0.218 1.000 1.000 0.070 1.000 1.000 1.000

g5 0.250 1.000 1.000 0.078 1.000 1.000 1.000

III g1 0.000 0.056 0.020 0.044 0.120 0.054 0.050

g2 0.008 0.624 0.154 0.056 0.122 0.246 0.215

g3 0.023 1.000 0.458 0.056 0.150 0.958 1.000

g4 0.055 1.000 0.646 0.052 0.248 1.000 1.000

g5 0.135 1.000 0.964 0.036 0.184 1.000 1.000

IV g1 0.000 0.062 0.025 0.046 0.102 0.042 0.035

g2 0.007 0.214 0.104 0.048 0.170 0.090 0.007

g3 0.013 0.824 0.240 0.026 0.196 0.392 0.370

(continued) 
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Focusing on structural change in each speci!c moment, we !nd more results worth noting. First, 
with respect to structural change in the !rst moment only, ISD⇤ˇR performs very similarly to that 
of the Bai–Perron test for all sample sizes. Second, with respect to the second moment, ISD⇤ˇR 
performs very similarly to SupMZ and of course Bai–Perron performs quite poorly (again for 
all sample sizes). Third, with respect to structural change in the third moment, for all sample sizes 
ISD⇤ˇR outperforms weighted KS and weighted CvM, while Bai–Perron and SupMz perform 
poorly. Finally, with respect to the fourth moment, ISD⇤ˇR again outperforms weighted KS 
and weighted CvM. Overall, we !nd the simulation results as expected and quite encouraging 
for our proposed test.

We also evaluate to what extent the proposed test can recover the true break. Recall that the true 
break is set in the middle of the sample (B = T/2). Two criteria are used to assess the accuracy of 
identifying the break. Criterion 1 checks if t⇤ = B when the null is rejected where t⇤ is the estimated 
break. Criterion 2 calculates the mean squared error (MSE) of estimated break. Results are pre-
sented in Table 3. By criterion 1, the estimated break is equal to the true break in many cases 
and not surprisingly tends to drops off as the ISD decreases. Similarly, the MSE (criterion 2) be-
tween the estimated break and the true break tends to decrease as the ISD increases. Both results 
are as expected. Interestingly, as the sample size increases we would also expect that the two cri-
teria would improve. While they tend to, they do not to the extent one may expect because of two 
competing forces. On the one hand, an increase in sample size tends to increase the accuracy of the 
two estimated densities and in turn the accuracy of the ISD measure and thus the supremum of that 
measure. This would improve the two criteria as sample size increases. On the other hand, as the 
sample size increases the ISD measure while more accurate, tails off from its supremum at a much 
slower rate. This is because the contamination of the one estimated density with a !xed number of 
observations from the other density is becoming less as the sample size grows. That is, one conta-
minated observation represents 2.86% for a sample of size 35 versus only 0.20% for a sample of 
size 500. Therefore, ISD tails off slower from its supremum (as measured by number of points 
away from the true break) as the sample size grows. This would worsen the two criteria as sample 
size increases. These two competing effects are common in predicting structural break points. 
Therefore, the results in Table 3 are as expected.

4 Application to crop yields
In this section, the proposed test is applied to county data for corn, soybean, and winter wheat 
yields in the U.S. Of the roughly 250 million U.S. crop acres in 2022, corn and soybeans account 
for roughly 35% each and wheat accounts for roughly 20%. Furthermore, in 2022 there were 1.5 
million insurance policies purchased for these crops carrying a total premium of $12 billion and a 
total liability of $122 billion. Corn serves both as a food staple and as livestock feed. The U.S. is the 
largest global producer of corn; in 2022, it accounted for 353 million metric tonnes of 1,169 mil-
lion metric tonnes produced globally. Similarly, the U.S. is the world’s largest producer and second 
largest exporter of soybean. In 2022, the U.S. produced 120 million metric tons of the 354 million 
metric tons worldwide. We include wheat since it is the third most important U.S. !eld crop in 
terms of area planted and volume produced. Planted area for winter wheat was around 34 million 
acres in 2022.

As with most of the literature, we use county-level yield data from the United States Department 
of Agriculture (USDA) National Agricultural Statistics Service. The most complete data are 

Table 2. Continued  

g(y) True ISD ISD⇤ˇR ISD⇤ˇA Bai–Perron SupMZ Weighted KS Weighted CvM

g4 0.018 0.878 0.256 0.054 0.236 0.538 0.550

g5 0.022 0.922 0.406 0.048 0.262 0.658 0.780

Note. The !rst two columns display the simulated distributions as detailed in Table 1. The third column indicates the true 
ISD between f and g. The remaining columns indicate, out of 1,000 simulations, how frequently each test rejects the null 
hypothesis. The highest rejection rate in cases where null hypothesis is false is highlighted in bold.
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available from 1950 to 2021. To be included in the analysis, counties had to have a complete set of 
data. In total, our data set consists of 901 crop-county combinations. We employ USDA-RMA 
two-step methodology (detailed in Liu & Ker, 2021) in rating their area crop insurance programs. 
Their approach detrends yields using a two-knot linear spline.11 After estimating the trend, the de-
gree of heteroskedasticity is estimated using Harri et al. (2011) and crop yields are adjusted with 
the estimated degree of heteroskedasticity.12

A number of caveats are worth discussing with respect to the adjusted yield data. First, to avoid 
endpoint issues, the set of possible breaks removes the !rst and !nal 10 years. Second, in addition 
to evaluating the entire domain of the yield distribution, we restrict our proposed test over subsets 
of the domain that are of particular interest for insurance purposes. Our proposed test statistic is 
easily restricted to a given subset of the support by simply taking the integral of the squared dif-
ference over that subset rather than taking the integral over entire support. Speci!cally, de!ning 
the expected yield as ye, we take the integrals over subsets (0, .7ye), (0, .8ye), (0, .9ye), and 
(0, ye). These choices, referred to as ‘lower tail’ and ‘Ȝ� lower tail’ (Ȝ = .7, .8, .9), represent the 
standard coverage levels for crop insurance. For comparison purposes, the proposed test is sym-
metrically applied to upper tail as well.

Table 3. Accuracy of predicting break using the proposed test at sample size 70 and 1,000

Criterion 1 Criterion 2

Sample Size True ISD T = 70 T = 1,000 T=70 T = 1,000

I g1 0.000 n/a n/a n/a n/a

g2 0.125 22.5% 26.6% 7.64 6.47

g3 0.505 74.6% 68.6% 1.00 1.46

g4 0.563 95.4% 87.2% 0.21 0.32

g5 0.564 96.4% 98.2% 0.21 0.12

II g1 0.000 n/a n/a n/a n/a

g2 0.066 21.9% 22.9% 7.42 7.74

g3 0.159 39.2% 57.0% 3.99 3.15

g4 0.218 48.2% 56.8% 4.09 2.43

g5 0.250 45.0% 57.3% 4.66 2.41

III g1 0.000 n/a n/a n/a n/a

g2 0.008 8.5% 7.7% 11.62 13.18

g3 0.023 11.4% 14.0% 8.65 10.01

g4 0.055 17.5% 20.8% 8.24 7.44

g5 0.135 39.4% 41.8% 4.48 3.42

IV g1 0.000 n/a n/a n/a n/a

g2 0.007 7.7% 9.3% 11.02 10.87

g3 0.013 6.1% 11.2% 12.50 12.36

g4 0.018 10.3% 8.2% 11.81 11.96

g5 0.022 12.9% 12.8% 10.49 10.78

Note. The !rst two columns display the simulated distributions as detailed in Table 1. The third column indicates the true 
ISD between f and g. The forth and !fth columns indicate, out of 1,000 simulations, how frequently the estimated break, 
t⇤, is the same as the true break at sample size 70 and 1,000, respectively (Criterion 1). The sixth and seventh columns 
display the mean squared error of estimated break at sample size 70 and 1,000, respectively (Criterion 2).

11 Equation for two-knot linear spline: yt = Į1 + Į2t + į1d1(t − k1) + į2d2(t − k2) +  t, where yt is crop yield at time׫
t ∈ [1, . . . , T]; k1 and k2 represents knots on which certain restrictions are imposed to prevent knot positions from being 
too close to the end points and each other; d1 and d2 are two indicator functions where d1 = 1 if t ≥ k1 and d2 = 1 if 
t ≥ k2.

12 The degree of heteroskedasticity is estimated by: ln(2̂׫t ) = ȕ + Ȗln(ŷt) + vt, where ̂׫t and ŷt are residuals and !tted 
values from the spline estimation. Ȗ̂�represents the degree of heteroskedasticity.
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Table 4 presents the number of rejections at the 5% signi!cance level. Randomization method is 
used for !nding the rejection critical threshold as discussed in Section 3. The !rst set of three col-
umns represent tests on the yield data correcting only for the temporal process (!rst moment). The 
number represents the rejections of the null (i.e. no structural change). The second set of the three 
columns represents tests on the yield data correcting for the temporal process and heteroscedastic-
ity (!rst two moments). The number again represents the rejections of the null (i.e. no structural 
change). Given that the !rst set of three columns test for structural change beyond the conditional 
mean while the second set of three columns test for structural change beyond the conditional mean 
and variance, the number of rejections is necessarily smaller. The rows represent different domains 
over which the proposed test is calculated.

In general, we !nd a surprising number of rejections given the relatively small sample size 
(1950–2021).13 A number of interesting points are worth noting. First, when evaluating at the en-
tire yield range, we !nd strong evidence of structural change above the !rst moment in corn yields 
(84.6%), followed by wheat (61.3%), and soybean (56.4%). As expected, the number of rejec-
tions notably decreases when we consider structural change beyond !rst two moments, but the 
numbers still support the existence of structural change beyond mean and variance in corn yields 
(42.3%), wheat (29.8%), and soybean (25.1%). Second, the number of rejections decreases as the 
support over which the test statistic is calculated shrinks. This is not surprising given the power of 
the test will decrease. Also, the upper and lower tail rejections are roughly equivalent. Third, when 
we plot the p-values and rejection decisions for corn yields as illustrated in Figure 2 (plots for soy-
bean and wheat are in online supplementary material), there does appear to be spatial correlation 
among the rejections. Grey counties are those without data. Finally, with hundreds of county-level 
crop yields being tested, there are concerns regarding the multiple testing issue. We have imple-
mented the Holm–Bonferroni correction (Holm, 1979) for the purpose of multiple testing adjust-
ment. As anticipated, this adjustment has led to a reduction in the count of counties for which the 
null hypothesis is rejected. For example, with respect to corn that had 374 rejections for the entire 
distribution, after the correction that number drops to 279. The results when the Holm– 
Bonferroni correction is implemented are presented in online supplementary material. Overall, 
the results consistently substantiate our conclusion that structural change beyond the mean has 
taken place in crop yield distributions.

Table 4. Structural change test results

Above the !rst moment Above !rst two moments

Yield support evaluated Corn Soybean Winter wheat Corn Soybean Winter wheat

Entire 374 189 76 187 84 37

Lower tail 345 170 74 181 60 36

0.9 Lower tail 268 126 67 178 49 37

0.8 Lower tail 131 75 58 140 38 30

0.7 Lower tail 53 46 47 75 28 24

Upper tail 335 177 72 162 89 33

0.9 Upper tail 300 164 64 156 86 30

0.8 Upper tail 282 142 50 152 81 25

0.7 Upper tail 281 127 44 150 63 26

Total 442 335 124 442 335 124

Note. Column 1 depicts the support interval that the structural change test is calculated over. Columns 2–4 show test 
results after adjusting crop yields for differences in the !rst moment. Columns 5–7 show test results after adjusting crop 
yields for differences in the !rst two moments.

13 For comparison, we also employed the weighted KS test and weighted CvM test (Inoue, 2001) to assess structural 
change beyond the !rst two moments in our crop yield data (see online supplementary material). These tests yield fewer 
rejections than our proposed test. However, the relative number of rejections can not be interpreted as the presence or 
lack thereof of structural change is unknown with real yield data.
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The locations of the estimated breaks can be easily recovered from the proposed test. Figure 3
shows when structural change is found given testing across the entire support of yield distribution.14

For corn and soybean but markedly less so for wheat, the estimated breaks are found near the be-
ginning of the sample period. This is likely caused by increasing adoption of hybrid varieties for corn 
and soybean. Conversely, there is very little production of hybrid wheat. Interestingly, this raises the 
question of multiple break points. To estimate a second break, we focus on counties which have a 
break estimated around 1965, 1985, and 2000 so that there are enough observations on both sides 
of the possible break for estimation. Of the 164 corn counties found to have a structural break, a 
second break is found in 53 of them. Of the 62 soybean counties found to have a structural break, 
a second break is found in 21 of them. Finally, of the 31 wheat counties found to have a structural 
break, a second break is found in 10 of them.

5 Implications for rating crop insurance contracts
The motivation for the proposed test is with respect to rating crop insurance contracts. We illus-
trate the impact of structural change on the resulting premium rates by calculating premium rates 
based on the entire historical yield series and those based on the historical yield data post the struc-
tural change. Again, we use the USDA-RMA methodology to adjust the yield series and recover the 
premium rates. We consider both the 90% and 70% coverage levels. The absolute percentage dif-
ference in the premium rates are depicted in Figure 4; rate differences for all three crops and testing 
for structural change above the !rst and !rst two conditional moments are illustrated. The results 
are notable because of the sheer magnitude. For all three crops, the premium rate differences be-
tween the historical data and the historical data post structural change are substantial; the median 

Figure 2. P-values and rejection decisions for county-level corn yields. Note. Structural change test above first 
moment (top 2 plots) and above first two moments (bottom 2 plots).

14 Online supplementary material illustrates the results when we subset to speci!ed regions. As expected, the results 
do not change markedly.
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rate differences are between 30% and 50%. For a multi-billion dollar program, that represents a 
signi!cant transfer of monies between farmers, insurance companies, and the government.

The impact of structural change on the resulting premium rates can be evaluated by a repeated 
game of out-of-sample rating accuracy designed by Ker McGowan (2000) and detailed therein. 
Essentially, two competing methodologies, denote A and B, are pitted against each other in a re-
peated out-of-sample rating game of insurance contracts. Methodology A retains all contracts that 
it believes methodology B has over-priced and thus expects to make money. Conversely, method-
ology A cedes back to B any contracts that it believes methodology B has under-priced and expects 
to lose money. That is, methodology A retains all contracts whose premium rates are less than 
methodology B (over-priced contracts) and cedes all contracts whose premium rates are greater 
than methodology B (under-priced contracts). Only yield information from prior is used to esti-
mate the premium rates for the competing methodologies A and B so that an out-of-sample metric 
not an in-sample metric is employed. The loss ratios (total losses over total premiums) of the set of 
retained and ceded contracts are recovered using actual realized yields. Randomization methods 
are used to recover the null for the out-of-sample metric. This game has been widely used in the 
crop insurance literature to compare competing rating methodologies (Annan et al., 2014; 
Harri et al., 2011; Ker & Coble, 2003; Ker & Tolhurst, 2019; Ker et al., 2016; Liu & Ramsey, 
2023; Park et al., 2019, 2022; Ramsey, 2020; Tolhurst & Ker, 2015).

Figure 3. Estimated breaks. Plots on the left side are based on yield data adjusted for the first moment only. Plots on 
the right side are based on yield data adjusted for both first two moments.

Figure 4. Empirical premium rate differences at 90% coverage level (left) and 70% coverage level (right).
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In our application of the game, we use identical rating methodologies (the current RMA meth-
odology) but one set of rates is based on the entire yield series (methodology B) while the other is 
based on yield data only post structural break found via our proposed test (methodology A). That 
is, premium rates in 2007 are estimated using data from 1950 to 2006 for methodology B and 
structural break to 2006 for methodology A (assuming a structural break exists). The actual 
loss in 2007 is calculated by using the corresponding realized 2007 yields. The game is repeated 
for 2008,…,2020. To account for the !rst mover advantage, a second test of ef!cacy is conducted 
by considering private gains of methodology A relative to gains methodology B would make if 
their roles were reversed. This second test is detailed in Ker et al. (2016).

Table 5 presents the results of the out-of-sample rating accuracy game and the ef!cacy test for 
coverage 90% and 70% coverage levels and all three crops. In all cases, loss ratios for method-
ology A (rates based on structural change tests) are less than methodology B (rates based on entire 
yield series) and statistically signi!cant in !ve of six cases.15 This suggests that money can be made 
by private insurers adverse selecting against the government based on premium rates from trun-
cated (as per our proposed test) yield series. Furthermore, the ef!cacy tests suggest that rates based 
on yield data post structural change (as identi!ed by our proposed test) are more accurate than 
rates based on the entire yield series. These results are very encouraging for our proposed test 
as they are based on an out-of-sample metric tailored for insurance purposes.

6 Conclusion
Tests for structural change with known and unknown break(s) in the !rst (Chow, 1960) and (Bai 
& Perron, 1998) and second moment (Esfandiar et al., 2010) abound. However, insurance is pri-
marily interested in lower tail probabilities and as such the detection of structural change in tail 
probabilities or higher moments is of great concern for the pricing and ef!cacy of insurance pro-
grams. In this article, we proposed a test for structural change with an unknown break(s) which 
has power against structural change in any moment or tail. Intuitively, we combined a sup-type 
measure with nonparametric tests for distributional equivalence. Furthermore, our proposed 
test is both easy to apply and can be tailored to concentrate on a speci!c range of the underlying 
distribution if desired (i.e. subsection of the lower tail for insurance purposes).16 The asymptotic 
distribution is shown to follow the Kolmogorov distribution although in practice simulating the 
null based on the randomization method performs better. Our simulations demonstrate that the 
proposed test not only has power against structural change in higher moments, but also performs 
reasonably well at identifying the break.

Table 5. Out-of-sample rating game

Crop Number  
of counties

Retained  
(%)

Loss  
ratio (G)

Loss  
ratio (P)

p-value Ef!cacy  
test

At 90% Coverage level

Corn 442 34.19 1.20 1.03 0.0000 0.0005

Soybean 335 46.98 1.53 0.48 0.0000 0.0000

Winter wheat 124 40.00 2.06 1.22 0.1598 0.0005

At 70% Coverage level

Corn 442 40.43 0.85 0.53 0.0000 0.0005

Soybean 335 69.46 0.41 0.27 0.0950 0.0005

Winter wheat 124 41.82 3.24 1.45 0.0850 0.0037

15 Rather than compare our proposed test to no structural change in the rating game, we can explicitly test our pro-
posed test against that of the weighted KS and weighted CvM tests. The results (see online supplementary material) are 
encouraging in that our test outperforms the weighted KS and weighted CvM tests.

16 Note that while the proposed test can be used to detect structural change in the extreme tails of a distribution, it is 
likely to perform quite poorly. Our test statistic is based on kernel estimates which are entirely data-driven. These esti-
mators do not perform well at estimating extreme tail probabilities where there little to no data.
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The impetus for developing this structural change test was rating crop insurance contracts with 
historical yield/loss data in the presence of changing technology and climate. In the light of the size-
able resources directed toward these programs and its importance to the continued viability of pro-
duction agriculture throughout the world and thus food security, accurate estimation of premium 
rates for crop insurance contracts is of utmost importance to consumers, farmers, insurance com-
panies, and governments. Note, publicly subsidized crop insurance is the dominant farm policy in 
most of the developed world. Applying our proposed test to major U.S. !eld crop yields (corn, soy-
bean, winter wheat), we !nd structural change above the !rst and second moments in 70.9% and 
34.2% of the counties with a median absolute premium rate difference of around 35% and 50%, 
respectively. Given crop insurance is a multi-billion dollar program, these premium rate differen-
ces represent signi!cant public dollars. Although we have applied our proposed test to major U.S. 
crop yields, its application is of general interest as it can be applied to any type of crop yield data, 
other forms of insurance loss data (i.e. property, casualty, etc.), and even !nancial market data and 
climate data.

Finally, there are a number of avenues to consider in further developing the proposed test. First, 
relaxing the independently distributed assumption to allow strong mixing processes. This likely 
will require block sampling methods in the test statistic. Second, extending to multivariate data 
structures for both continuous and mixed data. This will require the use of product kernels. 
Third, correcting the over-rejection bias in smaller samples when using the randomization meth-
od. This likely will require the use of an adaptive smoothing parameter. Finally, consider a 
smooth/continual transition in structural change. This may require discarding a subset of the data.
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